VUNO Inc.

Science Direct

Development and validation of a deep-learning-based pediatric early warning system: A single-center study

  • Jan. 2021
  • by Seong Jong Park, Kyung-Jae Cho et. al. et. al.

Abstract

Background

Early detection and prompt intervention for clinically deteriorating events are needed to improve clinical outcomes. There have been several attempts at this, including the introduction of rapid response teams (RRTs) with early warning scores. We developed a deep-learning-based pediatric early warning system (pDEWS) and validated its performance.

Methods

This single-center retrospective observational cohort study reviewed, 50,019 pediatric patients admitted to the general ward in a tertiary-care academic children's hospital from January 2012 to December 2018. They were split by admission date into a derivation and a validation cohort. We developed a pDEWS for the early prediction of cardiopulmonary arrest and unexpected ward-to-pediatric intensive care unit (PICU) transfer. Then, we validated this system by comparing modified pediatric early warning score (PEWS), random forest (RF); an ensemble model of multiple decision trees and logistic regression (LR); a statistical model that uses a logistic function.

Results

For predicting cardiopulmonary arrest, the pDEWS (area under the receiver operating characteristic curve (AUROC), 0.923) outperformed modified PEWS (AUROC, 0.769) and reduced the mean alarm count per day (MACPD) and number needed to examine (NNE) by 82.0% (from 46.7 to 8.4 MACPD) and 89.5% (from 0.303 to 0.807), respectively. Furthermore, for predicting unexpected ward-to-PICU transfer pDEWS also showed superior performance compared to existing methods.

Conclusion

Our study showed that pDEWS was superior to the modified PEWS and prediction models using RF and LR. This study demonstrates that the integration of the pDEWS into RRTs could increase operational efficiency and improve clinical outcomes.

Author

Oyeon Kwon, Hyunho Park, Yeha Lee, Woo Hyun Shim, Chae Ri Park, Won Kyoung Jhang

Tag in

#biosignal

#VUNO Med® Solution

#VUNO Med®-DeepCARS™